Optimal Sizing of Residential PV-Battery Systems

Benjamin Hauck (<u>bhauck@uncc.edu</u>) Weimin Wang^{*} (<u>weimin.wang@uncc.edu</u>) Umit Cali (<u>ucali@uncc.edu</u>)

^{*} Principal Investigator

References

[1] X. H. Nguyen and M. P. Nguyen, "Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink", Environmental Systems Research 2015, 4:24.

[2] K. Ardani, E. O'Shaughnessy, R. Fu, C. McClurg, J. Huneycutt and R. Margolis, "Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016", 2016. Technical Report, NREL.

[3] J. Weniger, T. Tjaden and V. Quaschning, "Sizing of residential PV battery systems", Energy Procedia, 2014, 46: 78-87.

[4] M. Bortolini, M. Gamberi, A. Graziani, "Technical and economic design of photovoltaic and battery energy storage system", Energy Conversion and Management, 2014, 86: 81-92.

[5] R. Hendron and C. Engebrecht, "Building America House Simulation Protocols", Technical Report - U.S. Department of Energy, 2010.

Objective

By optimizing the sizes of PV array and battery storage, the project intends to

- Minimize the system's annualized cost and maximized the self sufficiency;
- Set up a foundation for prototyping a software tool residential PV-battery system design.

Results and Outlook

Major findings:

- is used; the self sufficiency increases gradually with the PV array size.
- cost increases significantly with battery size.

Future work:

- Techno economic assessment of PV-battery systems with different tarif structure, electricity prices, load profiles, and etc.
- Consider PV module title and orientation in the optimization problem.

	Methodology			
, ze for	 MATLAB was used for: Single-diode PV cell performance modeling discharging; Conventional power management strategy (Surplus energy is charged to the battery or enot satisfied by the PV-system is imported from the satisfied by the PV-system is imported from the second profiles for single-family metereorological year weather data, and rest rest in the formulation of different combinations ~ 106 KWh) sizes; Investigation of two scenarios with different 			
5	<section-header><section-header></section-header></section-header>	Life (Year) 25	Battery Price (\$/kWh) 500 (100)	PV-M (

and lithium-ion battery charging and

(PV power is used directly for the load first. exported to the power grid. Deficit power rom the grid.);

y detached houses, typical

sidential tariff structure in Charlotte;

s of PV (1.25 ~ $37.5 \text{ kW}_{\text{p}}$) and battery (2.12

battery costs.

odule Price	Discount Rate	Electricity Price
\$/kW _p)	(%)	(\$/kWh)
0.64	5	0.112